国产精品成人一区二区在线_日本淫妇xxww老女人,_黑人让我高潮的视频_欧美亚洲高清在线一区_国产丝袜久久久久之久_国产精品这里有精品_亚洲aⅴ男人的天堂t在线观看_免费黄色片一级毛片

高三數(shù)學(xué)下學(xué)期期中模擬試題

2021-06-12 試題

  本試卷分第I卷(選擇題)和第II卷(非選擇題)兩部分,其中第II卷第(15)題為選考題,其他題為必考題。考生作答時(shí),將答案答在答題卡上,在本試卷上答題無(wú)效。

  考試結(jié)束后,將本試卷和答題卡一并交回。

  注意事項(xiàng):

  1、答題前,考生務(wù)必先將自己的姓名,準(zhǔn)考證號(hào)填寫(xiě)在答題卡上,認(rèn)真核對(duì)條形碼上的姓名、準(zhǔn)考證號(hào),并將條形碼粘貼在答題卡的指定位置上。

  2、選擇題答案使用2B鉛筆填涂,如需改動(dòng),用橡皮擦干凈后,再選涂其他答案的標(biāo)號(hào),非選擇題答案使用0.5毫米的黑色中性(簽字)筆或碳素筆書(shū)寫(xiě),字體工整,筆跡清楚。

  3、請(qǐng)按照題號(hào)在各題的答題區(qū)域(黑色線框)內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效。

  4、保持卷面清潔,不折疊,不破損。

  5、做選考題時(shí),考生按照題目要求作答,并用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑。

  參考公式:

  樣本數(shù)據(jù) 的標(biāo)準(zhǔn)差 其中 為樣本平均數(shù)

  錐體體積公式 其中 為底面面積, 為高

  第I卷

  一.選擇題:本大題共10小題,每小題5分,共50分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.

  1.設(shè)M={ }, N={ },則( )

  A.M N B.N M C.M N D.N M

  2.已知 為虛數(shù)單位, 則復(fù)數(shù) 的虛部為( )

  A. 0 B. C. 1 D.

  3.在同一平面直角坐標(biāo)系中,畫(huà)出函數(shù)

  的部分圖像如下,則( )

  A.

  B.

  C.

  D.

  4.已知一個(gè)棱長(zhǎng)為2的正方體,被一個(gè)平面截后所得幾何體的三視圖所示,則該幾何體的體積是( )

  A.8 B.

  C. D.

  5. 如果對(duì)于任意實(shí)數(shù) , 表示不超過(guò) 的最大整數(shù). 例如 , .

  那么 是 的( )

  A.充分而不必要條件 B.必要而不充分條件 C.充要條件 D.既不充分也不必要條件

  6.對(duì)任意實(shí)數(shù) 函數(shù) 的圖象都不經(jīng)過(guò)點(diǎn) 則點(diǎn) 的軌跡是( )

  A.兩條平行直線 B. 四條除去頂點(diǎn)的射線 C. 兩條拋物線 D. 兩條除去頂點(diǎn)的拋物線

  7. 設(shè)變量 滿足約束條件 ,則目標(biāo)函數(shù) = 的取值范圍為( )

  A. B. C. D.

  8. 所示,兩射線 與 交于點(diǎn) ,下列5個(gè)向量中,① ② ③ ④ ⑤ 若以 為起點(diǎn),終點(diǎn)落在陰影區(qū)域內(nèi)(含邊界)的向量有( )個(gè).

  A.1 B.2 C.3 D.4

  9.若函數(shù) 的不同零點(diǎn)個(gè)數(shù)為 ,則 的值為( )

  A. 0 B. 1 C. 2 D. 3

  10. 為提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關(guān)數(shù)據(jù)組成傳輸信息.設(shè)定原信息為 ( ),傳輸信息為 ,其中 , 運(yùn)算規(guī)則為: , , , ,例如原信息為111,則傳輸信息為01111.傳輸信息在傳輸過(guò)程中受到干擾可能導(dǎo)致接收信息出錯(cuò),則下列接收信息一定有誤的是( )

  A.11010 B.01100 C.10111 D.00011

  第Ⅱ卷

  二.填空題:本大題共5小題,每小題5分,共25分。

  11.已知函數(shù) , 表示函數(shù) 的導(dǎo)函數(shù),則函數(shù) 的圖像在點(diǎn) 處的切線方程為_(kāi)_____________.

  12. 一個(gè)袋中裝有2個(gè)紅球和2個(gè)白球,現(xiàn)從袋中取出1球,然后放回袋中再取出一球,則取出的兩個(gè)球同色的概率是 .

  13. 設(shè)圓 的切線 與 軸的正半軸, 軸的正半軸分別交于點(diǎn) , ,當(dāng) 取最小值時(shí),切線 的為 .

  14. 在極坐標(biāo)系中,曲線 的焦點(diǎn)的極坐標(biāo)為 .

  15. 圖中的三角形稱(chēng)為謝賓斯基(Sierpinski)三角形.在下圖中,將第1個(gè)三角形的三邊中點(diǎn)為頂點(diǎn)的三角形著色,將第 個(gè)圖形中的每個(gè)未著色三角形的三邊中點(diǎn)為頂點(diǎn)的三角形著色,得到第 個(gè)圖形, 這樣這些圖形中著色三角形的'個(gè)數(shù)依次構(gòu)成一個(gè)數(shù)列 ,則數(shù)列 的通項(xiàng)公式為 .

  三.解答題:本大題共75分。其中(16)~(19)每小題12分,(20)題13分,(21)題14分.解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程和演算步驟

  16.(本小題滿分12分)在△ABC中,a, b, c分別為內(nèi)角A, B, C的對(duì)邊,且

  (Ⅰ)求A的大小;

  (Ⅱ)已知 且 ,求函數(shù) 在區(qū)間 上的最大值與最小值.

  17.(本題滿分12分)莆田市在每年的春節(jié)后,市政府都會(huì)發(fā)動(dòng)公務(wù)員參與到植樹(shù)活動(dòng)中去.林管部門(mén)在植樹(shù)前,為保證樹(shù)苗的質(zhì)量,都會(huì)在植樹(shù)前對(duì)樹(shù)苗進(jìn)行檢測(cè).現(xiàn)從甲乙兩種樹(shù)苗中各抽測(cè)了10株樹(shù)苗的高度,量出的高度如下(單位:厘米)

  甲:

  乙:

  (Ⅰ)根據(jù)抽測(cè)結(jié)果,完成答題卷中的莖葉圖,并根據(jù)

  你填寫(xiě)的莖葉圖,對(duì)甲、乙兩種樹(shù)苗的高度作比較,寫(xiě)出

  兩個(gè)統(tǒng)計(jì)結(jié)論;

  (Ⅱ)設(shè)抽測(cè)的10株甲種樹(shù)苗高度平均值為 ,將

  這10株樹(shù)苗的高度依次輸入按程序框圖進(jìn)行的運(yùn)算,問(wèn)

  輸出的 大小為多少?并說(shuō)明 的統(tǒng)計(jì)學(xué)意義.

  18.(本小題滿分12分),在梯形 中, ∥ , ,。 ,平面 平面 ,四邊形 是矩形, ,點(diǎn) 在線段 上.。

  (1)求證: 平面 ;。

  (2)當(dāng) 為何值時(shí), ∥平面 ?證明你的結(jié)論;

  19.(本小題滿分12分)設(shè)函數(shù) ,其中實(shí)數(shù) 為常數(shù).

  (Ⅰ)求證: 是函數(shù) 為奇函數(shù)的充要條件;

  (Ⅱ) 已知函數(shù) 為奇函數(shù),當(dāng) 時(shí),求表達(dá)式 的最小值.

  20.(本題滿分13分)

  21. (本題滿分14分) 設(shè) 是兩個(gè)數(shù)列,點(diǎn) 為直角坐標(biāo)平面上的點(diǎn).

  (Ⅰ)對(duì) 若三點(diǎn) 共線,求數(shù)列 的通項(xiàng)公式;

  (Ⅱ)若數(shù)列{ }滿足: ,其中 是第三項(xiàng)為8,公比為4的等比數(shù)列.求證:點(diǎn)列 (1, 在同一條直線上,并求出此直線的方程.

  高三數(shù)學(xué)下學(xué)期期中試題:沖刺全真模擬試題第I卷答案

  一、1~5 B D D D C A 6~10 B C A B C

  提示:

  1. 因?yàn)榧?,所以N M,選B.

  2.

  3.由 知

  函數(shù) 的圖像的振幅、最小正周期分別為

  對(duì)照?qǐng)D形便知選D.

  4.幾何體是正方體截去一個(gè)三棱臺(tái), .

  5. ①設(shè) 則 ,

  故 是 的充分條件;②設(shè) 則

  但 故 不是 的必要條件.

  6. 設(shè) ,則對(duì)任意實(shí)數(shù) 函數(shù) 的圖象

  都不經(jīng)過(guò)點(diǎn) 關(guān)于 的方程 沒(méi)有實(shí)數(shù)解

  或

  所以點(diǎn) 的軌跡是除去兩點(diǎn) 的兩條平行直線 與

  7. 1,可域?yàn)?的邊界及內(nèi)部,雙曲線 與可行域有公共點(diǎn)時(shí)

  8. 設(shè) 在陰影區(qū)域內(nèi),則射行線 與線段 有公共點(diǎn),記為 ,則存在實(shí)數(shù) 使得 ,且存在實(shí)數(shù) 使得 ,從而

  ,且 .只有②符合.

  9.

  函數(shù) 在定義域 上是減函數(shù),且 ,

  ,故

  10. 從101 中可知選C

  二、11. 12. 13. 14. 15.

  提示:

  11.

  故切線方程為

  12. 從袋中有放回地先后取出2,共有16種等可能的結(jié)果,其中取出的兩個(gè)球同色共有8種等可能的結(jié)果,故所求概率為

  13. 設(shè) ,則切線 的方程為 ,

  由 得 ,

  當(dāng)且僅當(dāng) 時(shí),上式取等號(hào),故 ,此時(shí)切線 的方程為

  14. ,

  其焦點(diǎn)的直角坐標(biāo)為 對(duì)應(yīng)的極坐標(biāo)為

  15.

  當(dāng) 時(shí),

  也可由不完全歸納法猜得.

  三、

  16.解:(Ⅰ)由已知,根據(jù)正弦定理得 1分

  即 , 3分

  5分

  (Ⅱ)由(Ⅰ)得: 設(shè)

  , 9分

  .

  當(dāng) 時(shí), 有最小值 當(dāng) 時(shí), 有最大值

  故函數(shù) 在區(qū)間 上的最大值與最小值分別為 與 12分

  17.解:(Ⅰ)莖葉圖2. 3分

  統(tǒng)計(jì)結(jié)論:①甲種樹(shù)苗的平均高度小于乙種樹(shù)

  苗的平均高度;

 、诩追N樹(shù)苗比乙種樹(shù)苗長(zhǎng)得更整齊;

 、奂追N樹(shù)苗的中位數(shù)為 ,乙種樹(shù)苗的中位數(shù)為 ;

 、芗追N樹(shù)苗的高度基本上是對(duì)稱(chēng)的,而且大多數(shù)集中在均值附近,

  乙種樹(shù)苗的高度分布較為分散. 6分

  (Ⅱ) (給分說(shuō)明:寫(xiě)出的結(jié)論中,1個(gè)正確得2分.)

  8分

  10分

  表示 株甲樹(shù)苗高度的方差,是描述樹(shù)苗高度離散程度的量.

  值越小,表示長(zhǎng)得越整齊, 值越大,表示長(zhǎng)得越參差不齊. 12分

  18.證明:(Ⅰ)在梯形 中, ,

  四邊形 是等腰梯形,

  且 ,

  又 平面 平面 ,交線為 , 平面 5分

  12分

  解法二:當(dāng) 時(shí), 平面 ,

  由(Ⅰ)知,以點(diǎn) 為原點(diǎn), 所在直線為坐標(biāo)軸,建立空間直角坐標(biāo)系,

  則 , , , ,

  ,

  平面 ,

  平面 與 、 共面,

  也等價(jià)于存在實(shí)數(shù) 、 ,使 ,

  設(shè) . ,

  又 , ,

  從而要使得: 成立,

  需 ,解得 當(dāng) 時(shí), 平面 .12分

  19.解: (Ⅰ)證法一:充分性: 若 ,則 .1分

  ① ;2分

  ②當(dāng) 時(shí),

  函數(shù) 為奇函數(shù). 3分

  必要性: 若函數(shù) 為奇函數(shù),則 ,

  即

  故 是函數(shù) 為奇函數(shù)的充要條件. 6分

  (Ⅰ)證法二:因?yàn)?,所以函數(shù) 為奇函數(shù)的充要條件是

  故 是函數(shù) 為奇函數(shù)的充要條件. 6分

  (Ⅱ) 若函數(shù) 為奇函數(shù), 則 .

  ①當(dāng) 時(shí), .7分

 、诋(dāng) 時(shí), 8分

  設(shè) , .9分

  單調(diào)減少 極小值 單調(diào)增加

  10分

  的極小值為 , ,11分

  且當(dāng) 時(shí), .

  所以 12分

  20.

  21.解:(Ⅰ)因三點(diǎn) 共線,

  得 故數(shù)列 的通項(xiàng)公式為 6分

  (Ⅱ)由題意

  由題意得

  當(dāng) 時(shí),

  .當(dāng)n=1時(shí), ,也適合上式,

  因?yàn)閮牲c(diǎn) 的斜率 為常數(shù)

  所以點(diǎn)列 (1, 在同一條直線上,

  且方程為: ,即 . 14分

【高三數(shù)學(xué)下學(xué)期期中模擬試題】相關(guān)文章:

高三數(shù)學(xué)模擬試題精選05-28

高三數(shù)學(xué)模擬試題05-24

關(guān)于高三數(shù)學(xué)下學(xué)期期中試題05-03

初二數(shù)學(xué)期中備考模擬試題04-17

高三理科數(shù)學(xué)下學(xué)期試題05-03

小升初數(shù)學(xué)的模擬試題04-15

GRE數(shù)學(xué)的模擬試題04-18

高三數(shù)學(xué)下學(xué)期復(fù)習(xí)試題參考06-12

高三數(shù)學(xué)下冊(cè)期中試題理科部分06-12

合阳县| 山东省| 锡林郭勒盟| 绵阳市| 泗水县| 鹤壁市| 甘孜县| 崇文区| 肃宁县| 白银市| 乌恰县| 沧州市| 邮箱| 潞城市| 汨罗市| 武强县| 深泽县| 光山县| 柞水县| 孟津县| 舞钢市| 花莲市| 南昌县| 江油市| 富阳市| 高尔夫| 家居| 永安市| 盈江县| 萨嘎县| 遵化市| 西乌珠穆沁旗| 历史| 长兴县| 乌拉特中旗| 衡南县| 拉萨市| 疏附县| 蛟河市| 襄樊市| 孟州市|