篇一:完全平方公式(1) 教學(xué)設(shè)計(jì)
【教材分析】
本節(jié)內(nèi)容是初中數(shù)學(xué)(北師大版)七年級(jí)下冊(cè)第一章《整式的運(yùn)算》中的——1.8完全平方公式。
一、教材的地位和前后聯(lián)系:完全平方公式是初中數(shù)學(xué)中的重要公式,在整個(gè)中學(xué)數(shù)學(xué)中有著廣泛的應(yīng)用.
一方面完全平方公式這一教學(xué)內(nèi)容是學(xué)生在已經(jīng)學(xué)習(xí)單項(xiàng)式乘法、多項(xiàng)式乘法及平方差公式基礎(chǔ)上的拓展,是對(duì)多項(xiàng)式乘法中出現(xiàn)的較為特殊的算式的一種歸納、總結(jié);另一方面,又為學(xué)習(xí)《因式分解》《配方法》等知識(shí)奠定了基礎(chǔ),是進(jìn)一步研究《一元二次方程》《二次函數(shù)》 的工具性內(nèi)容。
二、教材設(shè)計(jì)的思想方法:
教材按照學(xué)生的認(rèn)知規(guī)律,從具體到抽象,由直觀圖形引導(dǎo)學(xué)生觀察、實(shí)驗(yàn)、猜測(cè)、進(jìn)而論證,最后建立數(shù)學(xué)模型,使學(xué)生對(duì)公式從感性認(rèn)識(shí)、直觀認(rèn)識(shí)到本質(zhì)認(rèn)識(shí)。逐步培養(yǎng)學(xué)生的邏輯推理能力和建模思想。由此,本節(jié)課不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用,它在本章中起著舉足輕重的作用。
【學(xué)情分析】
1.認(rèn)知基礎(chǔ):學(xué)生已學(xué)習(xí)了整式的概念、整式的加減、冪的運(yùn)算、整式的乘法、平方差公式,這些基礎(chǔ)知識(shí)的學(xué)習(xí)為本節(jié)課的學(xué)習(xí)奠定了基礎(chǔ)。但是對(duì)于幾何圖形如何用代數(shù)來表示,從而表示圖形的面積,學(xué)生會(huì)有一定困難,另外,在具體運(yùn)用公式時(shí),學(xué)生的感性認(rèn)識(shí)往往表現(xiàn)比較突出,一部分學(xué)生總是會(huì)出現(xiàn)(a+b)2=a2+b2,(a-b)2=a2-b2的問題,對(duì)公式中a、b的理解,對(duì)“和”“差”符號(hào)的區(qū)別也會(huì)有些障礙。
2.活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在平方差公式一節(jié)中,學(xué)生已經(jīng)經(jīng)歷了探索與應(yīng)用的過程,獲得了一些數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),培養(yǎng)了一定的符號(hào)感和推理能力。
3. 心理特征:初中階段的學(xué)生邏輯思維能力、觀察能力,記憶能力和想象能力都有一定的局限性,感性認(rèn)識(shí)往往表現(xiàn)比較突出,很多學(xué)生還是處于模仿學(xué)習(xí)的思維階段,但同時(shí),這一階段的學(xué)生好動(dòng),注意力易分散,愛發(fā)表見解,希望得到老師的表?yè)P(yáng),所以在教學(xué)中應(yīng)抓住這些特點(diǎn),一方面運(yùn)用直觀生動(dòng)的圖形,引發(fā)學(xué)生的興趣,使他們的注意力始終集中在課堂上;另一方面,發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性,要?jiǎng)?chuàng)造條件和機(jī)會(huì),讓學(xué)生發(fā)表見解,在辨別中提高認(rèn)識(shí)。 【教學(xué)目標(biāo)】
1、知識(shí)與技能:
體會(huì)公式的發(fā)現(xiàn)和推導(dǎo)過程,了解公式的幾何背景,理解公式的本質(zhì),會(huì)應(yīng)用公式進(jìn)行簡(jiǎn)單的計(jì)算。
2、過程與方法:
通過讓學(xué)生經(jīng)歷探索完全平方公式的過程,培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展推理能力和有條理的表達(dá)能力。培養(yǎng)學(xué)生的數(shù)形結(jié)合能力。
3、情感態(tài)度價(jià)值觀:
體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索性和創(chuàng)造性,并在數(shù)學(xué)活動(dòng)中獲得成功的體驗(yàn)與喜悅,樹立學(xué)習(xí)自信心。
【教學(xué)重點(diǎn)】
1、對(duì)公式的理解,包括它的推導(dǎo)過程、結(jié)構(gòu)特點(diǎn)、語(yǔ)言表述(學(xué)生自己的語(yǔ)言)、幾何解釋。
2、會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。
【教學(xué)難點(diǎn)】
1、完全平方公式的推導(dǎo)及其幾何解釋。
2、完全平方公式的結(jié)構(gòu)特點(diǎn)及其應(yīng)用
【教學(xué)方法】“探究式學(xué)習(xí)”。
在教學(xué)中,突出學(xué)生的主動(dòng)性、參與性,讓學(xué)生通過觀察特點(diǎn)——分析——?dú)w納總結(jié)——得出結(jié)論,初步掌握探究的學(xué)習(xí)方法。
【學(xué)法指導(dǎo)】
積極參與交流探討,從學(xué)習(xí)中感受樂趣,及時(shí)地歸納總結(jié)、發(fā)現(xiàn)問題、解決問題。
【教學(xué)課型】新授課
【課時(shí)安排】一課時(shí)
【教學(xué)過程】
一、 復(fù)習(xí)舊知、引入新知
設(shè)計(jì)說明
問題1:請(qǐng)說出平方差公式,說說它的結(jié)構(gòu)特點(diǎn)。
問題2:平方差公式是如何推導(dǎo)出來的?
問題3:平方差公式可用來解決什么問題,舉例說明。
問題4:想一想、做一做,說出下列各式的結(jié)果。
。1
。╝+b)2 (2) (a-b)2
。ù藭r(shí),教師可讓學(xué)生分別說說理由,并且不直接給出正確評(píng)價(jià),還要繼續(xù)激發(fā)學(xué)生的學(xué)習(xí)興趣。)
二.創(chuàng)設(shè)問題情境、探究新知
設(shè)計(jì)說明
一塊邊長(zhǎng)為a米的正方形實(shí)驗(yàn)田,因需要將其邊長(zhǎng)增加b米,形成四塊實(shí)驗(yàn)田,以種植不同的新品種。(如圖)
⑴ 四塊面積分別為: 、 、 、 ;
、 兩種形式表示實(shí)驗(yàn)田的總面積:
、 整體看:邊長(zhǎng)為 的大正方形,S= ;
、诓糠挚矗核膲K面積的和,S= 。
a b
總結(jié) : 通過以上探索你發(fā)現(xiàn)了什么?
問題1:通過以上探索學(xué)習(xí),同學(xué)們應(yīng)該知道我們提出的問題4正確的結(jié)果是什么了吧?
2 問題2:如果還有同學(xué)不認(rèn)同這個(gè)結(jié)果,我們?cè)倏聪旅娴膯栴},繼續(xù)探索。(a+b)表示的意義是什么?請(qǐng)你用多項(xiàng)式的乘法法則加以驗(yàn)證。
(教學(xué)過程中教師要有意識(shí)地提到猜想、感覺得到的不一定正確,只有再通過驗(yàn)證才能得出真知,但還是要鼓勵(lì)學(xué)生大膽猜想,發(fā)表見解,但要驗(yàn)證)
問題3:你能說說(a+b)2=a2+2ab+b2
這個(gè)等式的結(jié)構(gòu)特點(diǎn)嗎?用自己的語(yǔ)言敘述。
(結(jié)構(gòu)特點(diǎn):右邊是二項(xiàng)式(兩數(shù)和)的平方,右邊有三項(xiàng),是兩數(shù)的平方和加上這兩數(shù)乘積的二倍)
問題4:你能根據(jù)以上等式的結(jié)構(gòu)特點(diǎn)說出(a-b)2等于什么嗎?請(qǐng)你再用多項(xiàng)式的乘法法則加以驗(yàn)證。
總結(jié):我們把(a+b)2=a2+2ab+b2 (a–b)2=a2–2ab+b2稱為完全平方公式。
問題:① 這兩個(gè)公式有何相同點(diǎn)與不同點(diǎn)?
、 你能用自己的語(yǔ)言敘述這兩個(gè)公式嗎?
(學(xué)生交流,教師歸納總結(jié):)
語(yǔ)言描述:兩數(shù)和(或差)的平方等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的2倍。
強(qiáng)化記憶:首平方,尾平方,首尾二倍放中央,和是加來差是減。
〈三〉、例題講解,鞏固新知
例1:利用完全平方公式計(jì)算
設(shè)計(jì)說明
。1)(2x-3)2 (2) (4x+5y)2 (3) (mn-a)2
解:(2x-3)2 =(2x)2 -2〃(2x)〃3+32
= 4x2-12x+9
(4x+5y)2 =(4x)2 +2〃(4x)〃(5y)+(5y)2
= 16x2+40xy+25y2
。╩n-a)2 =(mn)2 -2〃(mn)〃a+a2
= m2 n2 - 2mna +a2
交流總結(jié):運(yùn)用完全平方公式計(jì)算的一般步驟
。1)確定首、尾,分別平方;
。2)確定中間系數(shù)與符號(hào),得到結(jié)果。
四、練習(xí)鞏固
設(shè)計(jì)說明
練習(xí)1:利用完全平方公式計(jì)算
、 (2x?3y)2 ② (2x?3y)2 (3)(-2t-1)2
練習(xí)2:利用完全平方公式計(jì)算
。1)(n+1)2 -n2 (2)?ab?3x???3x?ab?
練習(xí)3:求?x?y??x?y???x?y?的值,其中x?5,y?2 2
。ň毩(xí)可采用多種形式,學(xué)生上黑板板演,師生共同評(píng)價(jià)。也可學(xué)生獨(dú)立完成后,學(xué)生互相批改,力求使學(xué)生對(duì)公式完全掌握,如有學(xué)生出現(xiàn)問題,學(xué)生、教師應(yīng)及時(shí)幫助。)
五、變式練習(xí)
設(shè)計(jì)說明
篇二:《完全平方公式》的教學(xué)設(shè)計(jì)及反思
一、內(nèi)容簡(jiǎn)介
本節(jié)課的主題:通過一系列的探究活動(dòng),引導(dǎo)學(xué)生從計(jì)算結(jié)果中總結(jié)出完全平方公式的兩種形式。 關(guān)鍵信息:
1、以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會(huì)、參與科學(xué)探究過程。首先提出等號(hào)左邊的兩個(gè)相乘的多項(xiàng)式和等號(hào)右邊得出的三項(xiàng)有什么關(guān)系。通過學(xué)生自主、獨(dú)立的發(fā)現(xiàn)問題,對(duì)可能的答案做出假設(shè)與猜想,并通過多次的檢驗(yàn),得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達(dá)與交流等活動(dòng),獲得知識(shí)、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。
2、用標(biāo)準(zhǔn)的數(shù)學(xué)語(yǔ)言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)生的數(shù)學(xué)思維。
二、學(xué)習(xí)者分析:
1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識(shí)和技能:
、偻愴(xiàng)的定義。
、诤喜⑼愴(xiàng)法則。
、鄱囗(xiàng)式乘以多項(xiàng)式法則。
2、學(xué)生對(duì)將要習(xí)的內(nèi)容已經(jīng)具備的知識(shí)水平:
在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從特殊性的計(jì)算上升到一般性的規(guī)律,得出公式,并能正確的應(yīng)用公式。
三、教學(xué)目標(biāo)及其對(duì)應(yīng)的課程標(biāo)準(zhǔn):
。ㄒ唬┙虒W(xué)目標(biāo):
1、經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展推理能力。
2、會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。
3、了解(a+b)2=a2+2ab+b2的幾何背景。
。ǘ┲R(shí)與技能:經(jīng)歷由一般的多項(xiàng)式乘法向乘法公式過渡的探究過程,進(jìn)一步培養(yǎng)學(xué)生歸納總結(jié)的能力,并給公式的應(yīng)用打下基礎(chǔ)。
。ㄈ⿺(shù)學(xué)思考:能收集、選擇、處理數(shù)學(xué)信息,并做出合理的推斷或大膽的猜測(cè);
。ㄋ模┙鉀Q問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題。
。ㄎ澹┣楦信c態(tài)度:敢于面對(duì)數(shù)學(xué)活動(dòng)中的困難并有獨(dú)立克服困難勇氣和運(yùn)用知識(shí)解決問題的成功體驗(yàn),有學(xué)好數(shù)學(xué)的自信心;通過觀察、實(shí)驗(yàn)、歸納、類比、推斷可以獲得數(shù)學(xué)猜想,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索性和創(chuàng)造性,感受證明的必要性、證明過程的嚴(yán)謹(jǐn)性以及結(jié)論的確定性;在獨(dú)立思考的基礎(chǔ)上,積極參與對(duì)數(shù)學(xué)問題的`討論,敢于發(fā)表自己的觀點(diǎn),并尊重與理解他人的見解;能從交流中獲益。
四、教學(xué)重點(diǎn);完全平方公式的準(zhǔn)確應(yīng)用。
五、教學(xué)難點(diǎn);掌握公式中字母表達(dá)式的意義及靈活運(yùn)用公式進(jìn)行計(jì)算。
六、教育理念和教學(xué)方式:
1、教師是學(xué)生學(xué)習(xí)的組織者、促進(jìn)者、合作者:本節(jié)的教學(xué)過程,要為學(xué)生的動(dòng)手實(shí)踐,自主探索與合作交流提供機(jī)會(huì),搭建平臺(tái);尊重學(xué)生的個(gè)人感受和獨(dú)特見解;幫助學(xué)生發(fā)現(xiàn)他們所學(xué)東西的個(gè)人意義和社會(huì)價(jià)值,學(xué)生是學(xué)習(xí)的主人,在教師指導(dǎo)下主動(dòng)的、富有個(gè)性的學(xué)習(xí),用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。當(dāng)學(xué)生迷路的時(shí)候,教師不輕易告訴方向,而是引導(dǎo)他怎樣去辨明方向;當(dāng)學(xué)生登山畏懼了的時(shí)候,教師不是拖著他走,而是喚起他內(nèi)在的精神動(dòng)力,鼓勵(lì)他不斷向上攀登。
2、采用“問題情景—探究交流—得出結(jié)論—強(qiáng)化訓(xùn)練”的模式展開教學(xué)。充分利用動(dòng)手實(shí)踐的機(jī)會(huì),盡可能增加教學(xué)過程的趣味性,強(qiáng)調(diào)學(xué)生的動(dòng)手操作和主動(dòng)參與,通過豐富多彩的集體討論、小組活動(dòng),以合作學(xué)習(xí)促進(jìn)自主探究。
3、教學(xué)評(píng)價(jià)方式:
。1) 通過課堂觀察,關(guān)注學(xué)生在觀察、歸納、應(yīng)用等活動(dòng)中的主動(dòng)參與程度與合作交流意識(shí),及時(shí)給與鼓勵(lì)、強(qiáng)化、指導(dǎo)和矯正。
。2) 通過判斷和舉例,給學(xué)生更多機(jī)會(huì),反饋知識(shí)與技能的掌握情況,使老師可以及時(shí)診斷學(xué)情,調(diào)查教學(xué)。
。3) 通過課后訪談和作業(yè)分析,及時(shí)查漏補(bǔ)缺,確保達(dá)到預(yù)期的教學(xué)效果。
七、教學(xué)和活動(dòng)過程:
〈一〉、提出問題
[引入] 同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類項(xiàng)法則,你會(huì)計(jì)算下列各題嗎? (x+3)2=_______________,(x-3)2=_______________,
這些式子的左邊和右邊有什么規(guī)律?再做幾個(gè)試一試:
(2m+3n)2=_______________,(2m-3n)2=_______________,
〈二〉、分析問題
1、[學(xué)生回答] 分組交流、討論 多項(xiàng)式的結(jié)構(gòu)特點(diǎn)
(2m+3n)2= (2m)2+2·2m·3n+(3n)2=4m2+12mn+9n2,
(2m-3n)2= (2m)2-2·2m·3n+(3n)2=4m2-12mn+9n2,
(1)原式的特點(diǎn)。兩數(shù)和的平方。
。2)結(jié)果的項(xiàng)數(shù)特點(diǎn)。等于它們平方的和,加上它們乘積的兩倍
(3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號(hào)的特點(diǎn))。
(4)三項(xiàng)與原多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系。
2、[學(xué)生回答] 總結(jié)完全平方公式的語(yǔ)言描述:
兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;
初中數(shù)學(xué)的教學(xué)設(shè)計(jì)和反思
教師的教學(xué)能力包括教學(xué)設(shè)計(jì)能力、教學(xué)實(shí)施能力、教學(xué)反思能力,其中,教學(xué)設(shè)計(jì)能力和教學(xué)實(shí)施能力是教師的基本能力,教學(xué)反思能力則是教師教育能力的核心和進(jìn)一步發(fā)展的關(guān)鍵。
3、[學(xué)生回答] 完全平方公式的數(shù)學(xué)表達(dá)式:兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
4、完全平方公式的幾何背景:
用不同的形式表示課本中圖形的總面積并進(jìn)行比較,你發(fā)現(xiàn)了什么?
(a+b)2=a2+2ab+b2
你能運(yùn)用公式計(jì)算下列各式嗎?
(-x-3)2=______________, (-x+3)2=_______________。
(-2m-3n)2=______________,(-2m+3n)2=_______________。
上面各式的計(jì)算結(jié)果:
(-x-3)2=(-x)2-2·(-x)·3+32=x2+6xn+9___,
(-x+3)2=(-x)2+2·(-x)·3+32=x2-6x+9____。
(-2m-3n)2=(2m)2-2·(-2m)·3n+(3n)2=4m2+12mn+9n2,
(-2m+3n)2=(2m)2+2·(-2m)·3n+(3n)2=4m2-12mn+9n2。
你從上面的計(jì)算結(jié)果中發(fā)現(xiàn)了什么規(guī)律?根據(jù)這個(gè)規(guī)律,完全平方公式又如何敘述?
〈三〉、運(yùn)用公式,解決問題
1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)
(m+n)2=____________, (m-n)2=_______________,
(-m+n)2=____________, (-m-n)2=______________,
(a+3)2=______________, (-c+5)2=______________,
(-7-a)2=______________, (0.5-a)2=______________.
2、判斷:
( )① (a-2b)2= a2-2ab+b2
( )② (2m+n)2= 2m2+4mn+n2
( )③ (-n-3m)2= n2-6mn+9m2
( )④ (5a+0.2b)2= 25a2+5ab+0.4b2
( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2
( )⑥ (-a-2b)2=(a+2b)2
( )⑦ (2a-4b)2=(4a-2b)2
( )⑧ (-5m+n)2=(-n+5m)2
3、① (x+y)2 =______________;② (-y-x)2 =_______________;
③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;
、(4x-5y)2 =______________;⑥ (0.5m+n)2 =___________;
〈四〉、[學(xué)生小結(jié)]
你認(rèn)為完全平方公式在應(yīng)用過程中,需要注意那些問題?
(1) 公式右邊共有3項(xiàng)。
(2) 兩個(gè)平方項(xiàng)符號(hào)永遠(yuǎn)為正。
(3)中間項(xiàng)的符號(hào)由等號(hào)左邊的兩項(xiàng)符號(hào)是否相同決定。
(4)中間項(xiàng)是等號(hào)左邊兩項(xiàng)乘積的2倍。
〈五〉、練習(xí)填空
。1)(-3a+2b)2=________________________________
。2)(-5-m) 2 =__________________________________
。3)(-0.5m+2n) 2=_______________________________
。4)(3/5a-1/2b) 2=________________________________
。5)(mn-3)2=__________________________________
。6)(ab3-1.5)2=_________________________________
(7)(2xy2+x2y) 2=_______________________________
。8)(2n3-4m2)=________________________________
〈六〉、自我評(píng)價(jià)
[小結(jié)] 通過本節(jié)課的學(xué)習(xí),你有什么收獲和感悟?
本節(jié)課,我們自己通過計(jì)算、分析結(jié)果,總結(jié)出了完全平方公式。在知識(shí)探索的過程中,同學(xué)們積極思考,大膽探索,團(tuán)結(jié)協(xié)作共同取得了進(jìn)步。
八、教后反思
本節(jié)課上學(xué)生體會(huì)了數(shù)形結(jié)合及轉(zhuǎn)化的數(shù)學(xué)思想,并知道猜想的結(jié)論必須要加以驗(yàn)證;授課思維流暢,知識(shí)發(fā)生發(fā)展過渡自然,學(xué)生容易得到一些結(jié)論但在老師的引導(dǎo)下又使問題的探討得以不斷深入,學(xué)生思考積極、氣氛活躍,教學(xué)效果較好。采用以小組自主探究的學(xué)習(xí)方式,同時(shí)各小組展開激烈的比賽。整節(jié)課都在緊張而愉快的氣氛中進(jìn)行。學(xué)生非常活躍。人人都能積極參與。先從代數(shù)式的幾何意義出發(fā),激發(fā)學(xué)生的圖形觀,利用拼圖的方法,使學(xué)生在動(dòng)手的過程中發(fā)現(xiàn)規(guī)律,并通過小組合作,探究歸納公式,然后強(qiáng)調(diào)數(shù)值的計(jì)算,使學(xué)生掌握公式的計(jì)算技巧。從而突出以學(xué)生為主體的探索性學(xué)習(xí)原則。讓學(xué)生自編符合完全平方公式和平方差公式結(jié)構(gòu)的計(jì)算題,從而有效地將兩類公式區(qū)分開,深刻認(rèn)識(shí)公式的結(jié)構(gòu)特征,并大大激發(fā)了學(xué)生的學(xué)習(xí)積極性。
同時(shí)課后感覺應(yīng)該引導(dǎo)學(xué)生用文字概括公式的內(nèi)容,從而培養(yǎng)學(xué)生抽象的數(shù)學(xué)思維能力和語(yǔ)言表達(dá)能力。對(duì)需要幫助的學(xué)生進(jìn)行針對(duì)性的個(gè)別指導(dǎo)較少。對(duì)于學(xué)生計(jì)算中存在的問題應(yīng)讓學(xué)生自己糾錯(cuò),教師不應(yīng)全權(quán)代勞。如利用兩數(shù)和的公式計(jì)算環(huán)節(jié),兩位學(xué)生分別講述自己的想法之后,教師應(yīng)該讓全體學(xué)生根據(jù)其方法進(jìn)行計(jì)算,自主驗(yàn)證,即使有些學(xué)生寫不出來,也會(huì)因?yàn)榻?jīng)過思考而印象深刻,如果為了節(jié)省時(shí)間教師自己代勞,那樣就不能夠充分體現(xiàn)學(xué)生的主體作用,而且效果也較前者差些。
在今后的教學(xué)中應(yīng)注意從以下幾個(gè)方面改進(jìn):
1、在教學(xué)中要講法則、公式的應(yīng)用,也要講公式的推導(dǎo),使學(xué)生在理解公式,法則道理的基礎(chǔ)上進(jìn)行記憶,比如:我們要借助面積圖形對(duì)完全平方公式做直觀說明。
2.必須強(qiáng)調(diào)學(xué)生時(shí)刻把握公式的特征及用途:
特征:左邊是兩個(gè)相同的二項(xiàng)式相乘,右邊是一個(gè)三項(xiàng)式,其中兩項(xiàng)是二項(xiàng)式中每一項(xiàng)的平方和,另一項(xiàng)是二項(xiàng)式中項(xiàng)的乘積的2倍或其相反式。用途:用于解決兩個(gè)完全相同的二項(xiàng)式乘積運(yùn)算. 應(yīng)在課堂上大力推行邊啟發(fā)、邊探索、邊歸納,突出以學(xué)生為主體的探索性學(xué)習(xí)原則..既講“法”,又講“理”:在教學(xué)中要講法則、公式的應(yīng)用,也要講公式的推導(dǎo),使學(xué)生在理解公式,法則道理的基礎(chǔ)上進(jìn)行記憶,比如:我們要借助面積圖形對(duì)完全平方公式做直觀說明.
3.講聯(lián)系、講對(duì)比、講特征.學(xué)生在運(yùn)用公式時(shí)出現(xiàn)的錯(cuò)誤,其原因是把完全平方公式和舊知識(shí)及分配律弄混淆,要善于排除新舊知識(shí)間互相干擾的作用. 規(guī)范板書。每節(jié)課的板書盡量堅(jiān)持做到三保留:重要知識(shí)點(diǎn)保留,典型例題保留,學(xué)生易錯(cuò)點(diǎn)保留。
【完全平方公式優(yōu)秀教學(xué)設(shè)計(jì)】相關(guān)文章:
《完全平方公式》教學(xué)設(shè)計(jì)04-07
《完全平方公式》教學(xué)設(shè)計(jì)范文07-03
完全平方公式優(yōu)秀教案08-09
完全平方公式教學(xué)課件03-29
完全平方公式教學(xué)反思07-04
《完全平方公式》教學(xué)反思12-13
《完全平方公式》教學(xué)反思09-02
完全平方公式教學(xué)反思09-03
完全平方公式的說課稿02-11