国产精品成人一区二区在线_日本淫妇xxww老女人,_黑人让我高潮的视频_欧美亚洲高清在线一区_国产丝袜久久久久之久_国产精品这里有精品_亚洲aⅴ男人的天堂t在线观看_免费黄色片一级毛片

平行線的性質教案設計

2024-04-25

  作為一名教職工,往往需要進行教案編寫工作,教案是教材及大綱與課堂教學的紐帶和橋梁。那么教案應該怎么寫才合適呢?下面是小編精心整理的平行線的性質教案設計,歡迎閱讀,希望大家能夠喜歡。

  平行線的性質教案設計 1

  一、目標分析

  1、知識與技能:探索平行線的性質,會用平行線的性質定理進行簡單的計算、證明;了解平行線的性質和判定的區(qū)別。

  2、過程與方法:通過學生動手操作、觀察,培養(yǎng)他們主動探索與合作能力,使學生領會數(shù)形結合、轉化的數(shù)學思想和方法,從而提高學生分析問題和解決問題的能力。

  3、情感、態(tài)度與價值觀:情境的創(chuàng)設,使學生認識到數(shù)學來源于生活又為生活服務,從而認識到數(shù)學的重要性。通過對平行線的性質的推導過程,培養(yǎng)學生嚴密的思維能力。

  二、教學重點、難點

  重點:平行線的三個性質及運用。

  難點:平行線的性質定理的推導及平行線的性質定理與判定定理的區(qū)別。

  三、教學過程

  1、創(chuàng)設情境引入

 。1)、我們的生活離不開電,生活中的電是通過兩條互相平行的導線送到千家萬戶的。輸電線路在某處轉了一個彎,已知轉彎后的兩條導線中的一條和原來的兩條導線中的一條之間的夾角是130°,那么這條導線和原來的另一條導線之間的夾角是多少度呢?學習了這節(jié)課后我們就很容易知道答案了。

  【設計意圖】通過生活中的實例引入,既能提高學生的學習興趣,激發(fā)學生探索知識的熱情,也能使學生認識到數(shù)學來源于生活。

 。2)設問:根據(jù)同位角相等可以判定兩條直線平行,反過來,如果兩條直線平行,同位角之間有什么關系呢?內錯角、同旁內角之間又有什么關系呢?

  【設計意圖】:通過復習回憶平行線的判定來引入新課的目的,一是溫故而知新,促使學生實現(xiàn)知識思維的正遷移;二是有利于學生在學習過程中去比較性質與判定的不同。

  2、探索新知

  (1)畫兩條平行線被第三條直線所截,找出哪些角是同位角,哪些是內錯角、同旁內角,并用量角器量一下同位角,確定它們的大小關系。猜想同位角之間的關系。

  【設計意圖】:畫平行線的.這個過程主要讓學生明白確定平行線性質的前提是要兩條平行線,幫助學生區(qū)分平行線的性質與判定。

 。2)講解平行線的性質一。

  【設計意圖】:加深學生的印象,更加牢固的掌握這一知識點,為推導出下面兩個性質打好基礎。

 。3)引導學生大膽猜想兩平行線被第三條直線所截得到的內錯角、同旁內角之間的關系。講解推導過程。

  【設計意圖】:這樣設計不僅使學生認識到平行線的三個性質之間的聯(lián)系,還培養(yǎng)了學生大膽猜測并通過推理驗證所猜測的結論的能力,為培養(yǎng)學生自主學習和良好的學習習慣都有幫助。

 。4)總結平行線的性質

  性質1:兩直線平行,同位角相等。

  性質2:兩直線平行,內錯角相等。

  性質3:兩直線平行,同旁內角互補。

 。5)平行線的性質和平行線的判定區(qū)別:要強調“平行線的判定是知道了角的關系來得出平行,而平行線的性質是知道兩直線平行得角的關系”

  3、知識運用

 。1)解決引入時提出的問題

  (2)利用所學的知識講解例4和例5

 。3)把一條直線平行移動到另一個位置,這兩條直線一定平行。講解例6。

  (4)練習P174—175第1、2、3、4題

  【設計意圖】:通過例題的講解,使學生認識到平行線的性質的用處,通過練習,使學生對此處知識點更加熟悉。

  4、回顧總結

 。1)、通過這節(jié)課的學習,你有什么收獲?你感受最深的是什么?

 。2)、這節(jié)課得到的平行線的性質與平行線判定的方法有什么區(qū)別和聯(lián)系?你能區(qū)分清楚嗎?

  【設計意圖】:通過提出兩個問題,讓學生自己進行小結,回顧本節(jié)課所學的知識,并將本節(jié)課學的知識與前一節(jié)所學的知識進行比較、整理。有利于學生加以區(qū)分和為以后的應用打下基礎。

  5、作業(yè)設計P175第5題

  【設計意圖】:本題是讓學生補充完整解答過程,學生在做作業(yè)過程中不但可以更深刻的理解平行線的性質,同時也讓學生了接邏輯推理的步驟,培養(yǎng)學生推理的能力。

  四、說板書設計平行線的性質

  1.平行線的性質:

  性質1:

  例題:

  練習:

  性質2:

  性質3:

  2.平行線的性質與判定的區(qū)別

  【設計意圖】:這樣設計板書,既簡潔明了,又突破了重難點,使學生很容易知道本節(jié)課的主要內容,也便于學生進行歸納總結。

  五、自我評價

  本節(jié)課從實際問題引入課題,各個環(huán)節(jié)自然銜接。在設計上,強調自主學習,讓學生在探究過程中進行,觀察分析,合理猜想,解決問題體驗并感悟平行線的性質,使他們感受到學習的快樂,真正成為學習的主人。農遠資源的利用,使學生對本節(jié)課的重點內容更加明了,更易使學生接受。通過本節(jié)課的學習,學生能基本掌握平行線的性質,并利用性質解決相關問題,學生的邏輯思維能力也將進一步的得到加強

  平行線的性質教案設計 2

  教學目標

  (1)知識與技能:

  探索平行線的性質定理,并掌握它們的圖形語言、文字語言、符號語言;會用平行線的性質定理進行簡單的計算、證明。

 。2)過程與方法:

  在定理的學習中,鍛煉觀察能力,嘗試與他人合作開展討論、研究,并表達自己的見解。

 。3)情感態(tài)度、價值觀:

  在課堂練習中,體驗幾何與實際生活的密切聯(lián)系。

  教學重點:平行線的性質。

  教學難點:平行線的性質定理與判定定理的區(qū)別。

  教學模式:發(fā)現(xiàn)教學模式。

  教學方法:直觀教學法、發(fā)現(xiàn)教學法、主體互動法。

  教學手段:計算機輔助教學。

  教學過程

  教學環(huán)節(jié)教師活動

  學生活動教學意圖復習提問

  復習提問:判定兩直線平行的方法有哪些?怎樣用符號語言表述?

  思考、回答

  了解學生的認知基礎,讓全體學生對前一節(jié)的內容進行回顧,并為新課的學習做準備。

  進

  【大屏幕】請每位同學利用手中的條格紙,任意選取其中的兩條線作l1、l2,再隨意畫一條直線l3與l1、l2相交,用量角器量得圖中的八個角,并填表(見附錄1)

  隨后同桌同學交換,再次測量、填表。

  關注:對于沒有帶量角器的學生,鼓勵他們在無需測量的情況下,找出圖中各角的度量關系。

  畫圖、測量、填表

  思考、動手嘗試,方法可能多種多樣

  激發(fā)學生探究數(shù)學問題的興趣,使學生獲得較強的感性認識,便于探索兩直線平行的性質定理。關注學生的實際操作,以及操作中的思考和學生學習數(shù)學的興趣。

  給學生留有充分的探索和交流的空間,鼓勵學生利用多種方法探索,這對于發(fā)展學生的空間觀念,理解平行線的性質是十分重要的。

  【提問】能否將我們發(fā)現(xiàn)的結論給予較為準確的文字表述?

  總結、表述

  鍛煉學生的歸納、表達能力,鼓勵學生敢于發(fā)表自己的觀點。

  【大屏幕】平行線的性質:

  定理1.兩條平行線被第三條直線所截,同位角相等。簡言之:兩直線平行,同位角相等。

  定理2.兩條平行線被第三條直線所截,內錯角相等。簡言之:兩直線平行,內錯角相等。

  定理3.兩條平行線被第三條直線所截,同旁內角互補。簡言之:兩直線平行,同旁內角互補。

  【提問】討論這些性質定理與前面所學的判定定理有什么不同?

  理解、記憶

  思考、討論、回答

  進行文字語言的規(guī)范。

  避免出現(xiàn)概念的混淆,滲透“命題”與“逆命題”的概念,突破本節(jié)課的'難點避免出現(xiàn)概念的混淆,突破本節(jié)課的難點。

  【提問】回憶平行線判定定理的符號語言的表述,參照附錄1的圖形,將上述性質定理怎樣用符號語言表達出呢?

  【大屏幕】符號語言:(不唯一)

  性質定理1.∵l1∥l2∴∠1=∠5(兩直線平行,同位角相等)

  性質定理1.∵l1∥l2∴∠3=∠5(兩直線平行,內錯角相等)

  性質定理1.∵l1∥l2

  ∴∠3+∠6=180o(兩直線平行,同旁內角互補)

  思考、一位同學板書。

  觀察、理解

  為今后進一步學習推理打基礎,并進行符號語言的規(guī)范。

  【提問】我們能否使用平行線的性質定理1說出性質定理2、3成立的道理呢?

  鼓勵學生使用符號語言表述推導過程。

  【大屏幕】規(guī)范定理的推導過程。

  思考、嘗試回答

  培養(yǎng)學生的邏輯思維能力以及嚴謹?shù)闹螌W態(tài)度。逐步鍛煉學生的推理能力,并進一步鞏固對定理的理解及語言的規(guī)范,感受成功的喜悅,樹立學習數(shù)學的信心。

  例

  范【大屏幕】例:如圖是一塊梯形鐵片的殘余部分,量得∠A=100o,∠B=115o,梯形另外兩個角分別是多少度?

  思考、嘗試運用符號語言進行推理。

  要求學生會用平行線的性質進行計算,只需算出所求的度數(shù)即可。初次計算格式不一定很完整。

  趣【大屏幕】(見附錄2)

  思考、討論、解釋結論,寓教于樂,進一步讓學生感受“認識來源于實踐”。

  鞏【大屏幕】鞏固練習(見附錄3)

  積極思考、展開討論、踴躍回答,循序漸進提高難度、提高靈活運用定理的能力,感受解決有關平行問題的關鍵,突破難點,并進一步提高用符號語言進行推理的能力。

  拓【大屏幕】探究題(見附錄4)

  【備注】如果時間不允許的話,該題可作為課后作業(yè),并給予簡單的提示。

  猜測、討論,尋找規(guī)律

  使重點中學學生的思路進一步得以拓寬,初次接觸輔助線的添加,使學生能力得以提高。

  課堂小結【提問】本節(jié)課我們學習了哪些定理?在表述這些定理時,應注意什么呢?

  回顧、歸納將本節(jié)課知識進行回顧。

  布置作業(yè)【大屏幕】布置作業(yè):教材P67的4、5;P68的6、7;P69的11、12

  課后完成

  課后能進一步鞏固,鼓勵學生去發(fā)現(xiàn)身邊的數(shù)學問題。

  附錄1:

  如圖,請選取條格紙上的任意兩條直線l1、l2,畫一條直線l3與這兩條平行線相交,標出這些角。

  各對同位角、內錯角、同旁內角的度數(shù)之間有什么關系?大膽的去猜想,試著說一說!

  附錄2:

  趣味練習:一輛汽車在筆直的公路上行駛,在兩次轉彎后,仍在原來的方向上平行前進,那么這兩次轉彎的角度可以是

  A、先右轉80o,再左轉100o

  B、先左轉80o,再右轉80o

  C、先左轉80o,再左轉100o

  D、先右轉80o,再右轉80o

  附錄3:鞏固練習:

  1、如圖,直線a∥b,∠1=54o,那么∠2、∠3、∠4各多少度?

  2、請在括號中填寫理由:

  ①∵∠B=∠3∴AB∥CE()

 、凇逜B∥CE∴∠A=∠2()

 、邸逜B∥CE∴∠B+∠BCE=180o()

 、堋摺螦=∠2∴AB∥CE()

  3、如圖,填空:

  ①∵ED∥AC(已知)

  ∴∠1=∠C()

 、凇逥F∥

  (已知)

  ∴∠2=∠BED()

  ③∵AB∥DF(已知)

  ∴∠3=∠()

 、堋逜C∥ED(已知)

  ∴∠=∠

 。▋芍本平行,內錯角相等)

  4、請結合圖形,根據(jù)所給定的平行線填入所需的角,并說明理由。(能否找出所有的情況)

 、佟逜B∥CD

  ∴∠()=∠()

  ②∵AD∥BC

  ∴∠()=∠()

 、邸逜E∥CF

  ∴∠()=∠()

  附錄4:探究題:

  如圖甲:已知AB∥DE,那么∠1+∠2+∠3等于多少度?試加以說明。

  當已知條件不變,而圖形變?yōu)槿鐖D乙時,結論改變了嗎?圖丙中的∠1+∠2+∠3+∠4是多少度呢?如果如丁圖所示,∠1+∠2+∠3+…+∠n的和又為多少度?你找到了什么規(guī)律嗎?

  平行線的性質教案設計 3

  【教學目標】

  ◆知識目標:理解掌握平行線的性質并能應用

  ◆能力目標:培養(yǎng)學生形成觀察辨別、逆向推理等數(shù)學方法,培養(yǎng)學生良好的創(chuàng)造性思維能力、逆向思維能力和嚴密的推理過程。

  ◆情感目標:通過多種教學活動,樹立自信,自強,自主感,由此激發(fā)學習數(shù)學的興趣,增強學好數(shù)學的信心。

  【教學重點、難點】

  ◆重點:平行線的.性質是重點

  ◆難點:例4是難點

  【教學過程】

  一、知識回顧:

  1、平行線的判定

  2、平行線的性質

  二、合作學習:

  如圖,直線AB∥CD,并被直線EF所截!2與∠3相等嗎?∠3與∠4的和是多少度?思考下列幾個問題:

 。1)圖中有哪幾對角相等?

 。2)∠3與∠1有什么關系?∠4與∠2有什么關系?

  1、你發(fā)現(xiàn)平行線還有哪些性質?

  平行線的性質:

  CFA432DE1B兩條平行線被第三條直線所截,內錯角相等。簡單地說,兩直線平行,內錯角相等。

  兩條平行線被第三條直線所截,同旁內角互補。簡單地說,兩直線平行,同旁內角互補。

  2、做一做:

  如圖,AB,CD被EF所截,AB∥CD(填空)

  若∠1=120°,則∠2=∠3=-∠1=

  3、例3如圖1-14,已知AB∥CD,AD∥BC。判斷∠1與∠2是否相等,并說明理由。

  思考下列幾個問題:

 。1)∠1與∠BAD是一對什么的角?它們是否相等?為什么?

 。2)∠2與∠BAD是一對什么的角?它們是否相等?為什么?

 。3)那么∠1與∠2是否相等?為什么?解:∠1=∠2 ∵AB∥CD(已知)

  ∴∠1+∠BAD=180°(兩直線平行,同旁內角互補)∵AD∥BC(已知)

  ∴∠2+∠BAD=180°(兩直線平行,同旁內角互補)

  E1B3DA2FCD1A2BC圖1—14∴∠1=∠2(同角的補角相等)

  討論:還有其它解法嗎?如不用“兩直線平行,同旁內角互補”這個性質是否可以解?

  4、練一練:(P、14課內練習1、2)

  5、例4如圖1-15,已知∠ABC+∠C=180°,BD平分∠ABC。

  ∠ABCBD與∠D相等嗎?請說明理由。思考下列幾個問題:

 。1)AB與CD平行嗎?為什么?

  (2)∠D與∠ABD是一對什么的角?它們是否相等?為什么?

 。3)∠CBD與∠ABD相等嗎?為什么?

  解:∠D=∠CBD ∵∠ABC+∠C=180°(已知)

  ∴AB∥CD(同旁內角互補,兩直線平行)

  ∴∠D=∠ABD(兩直線平行,內錯角相等)

  ∵BD平分∠ABC(已知)

  ∴∠CBD=∠ABD=∠D想一想:是否還有其它方法?(用三角形內角和定理等)

  6、練一練:

  如圖,已知∠1=∠2,∠3=65°,求∠4的度數(shù)。

  三、拓展

  12a34bD圖1-15Ccd

  1、如圖1,已知AD∥BC,∠BAD=∠BCD。判斷AB與CD是否平行,并說明理由

  2、如圖2,已知AB∥CD,AE∥DF。請說明∠BAE=∠CDF D C

  ABA圖1 B FECD

  四、知識整理:

  1、平行線的性質:

  兩條平行線被第三條直線所截,內錯角相等。簡單地說,兩直線平行,內錯角相等。兩條平行線被第三條直線所截,同旁內角互補。簡單地說,兩直線平行,同旁內角互補。

  2、思維方法:如不能直接證明其成立,則需證明它們都與第三個量相等

  3、要注意一題多解

  五、布置作業(yè)

  P15作業(yè)題及作業(yè)本

  平行線的性質教案設計 4

  一、創(chuàng)設實驗情境,引發(fā)學生學習興趣,引入本節(jié)課要研究的內容。

  試驗1:教師以窗格為例,已知窗戶的橫格是平行的,用三角尺進行檢驗,發(fā)現(xiàn)同位角相等。這個結論是否具有一般性呢?

  試驗2:學生試驗(發(fā)印制好的.平行線紙單)。

 。1)要求學生任意畫一條直線c與直線a、b相交;

  (2)選一對同位角來度量,看看這對同位角是否相等。

  學生歸納:兩條平行線被第三條直線所截,同位角相等。

  二、主體探究,引導學生探索平行線的其他性質以及對命題有一個初步的認識。

  活動1

  問題討論:

  我們知道兩條平行線被第三條直線所截,不但形成有同位角,還有內錯角、同旁內角。我們已經知道“兩條平行線被第三條直線所截,同位角相等”。那么請同學們想一想:兩條平行線被第三條直線所截,內錯角、同旁內角有什么關系?(分組討論,每一小組推薦一位同學回答)。

  教師活動設計:引導學生討論并回答。

  學生口答,教師板書,并要求學生學習推理的書寫格式。

  活動2

  總結平行線的性質。

  性質2:兩條平行線被第三條直線所截,內錯角相等。

  簡單說成:兩直線平行,內錯角相等。

  性質3:兩條平行直線被第三條直線所截,同旁內角互補。

  簡單說成:兩直線平行,同旁內角互補。

  平行線的性質教案設計 5

  一、主題分析與設計

  本節(jié)課是蘇科版義務教育課程標準實驗教科書七年級數(shù)學(下冊)第七章第2節(jié)內容——探索平行線的性質,它是直線平行的繼續(xù),是后面研究平移等內容的基礎,是"空間與圖形"的重要組成部分。

  《數(shù)學課程標準》強調:數(shù)學教學是數(shù)學活動的教學,是師生之間、生生之間交往互動與共同發(fā)展的過程;動手實踐,自主探索,合作交流是孩子學習數(shù)學的重要方式;合作交流的學習形式是培養(yǎng)孩子積極參與、自主學習的有效途徑。本節(jié)課將以"生活·數(shù)學"、"活動·思考"、"表達·應用"為主線開展課堂教學,以學生看得到、感受得到的基本素材創(chuàng)設問題情境,引導學生活動,并在活動中激發(fā)學生認真思考、積極探索,主動獲取數(shù)學知識,從而促進學生研究性學習方式的形成,同時通過小組內學生相互協(xié)作研究,培養(yǎng)學生合作性學習精神。

  二、教學目標

  1、知識與技能:掌握平行線的性質,能應用性質解決相關問題。

  2、數(shù)學思考:在平行線的性質的探究過程中,讓學生經歷觀察、比較、聯(lián)想、分析、歸納、猜想、概括的全過程。初中數(shù)學教育敘事

  3、解決問題:通過探究平行線的性質,使學生形成數(shù)形結合的數(shù)學思想方法,以及建模能力、創(chuàng)新意識和創(chuàng)新精神。

  4、情感態(tài)度與價值觀:在探究活動中,讓學生獲得親自參與研究的情感體驗,從而增強學生學習數(shù)學的熱情和團結合作、勇于探索、鍥而不舍的精神。

  三、教學重、難點

  1、重點:對平行線性質的掌握與應用

  2、難點:對平行線性質1的探究

  四、教學用具

  1、教具:多媒體平臺及多媒體課件

  2、學具:三角尺、量角器、剪刀

  五、教學過程

 。ㄒ唬﹦(chuàng)設情境,設疑激思

  1、播放一組幻燈片。

  內容:

 、俟┗疖囆旭偟蔫F軌上;

 、谟斡境刂械挠镜栏魴;

 、蹤M格紙中的線。

  2、提問溫故:日常生活中我們經常會遇到平行線,你能說出直線平行的條件嗎?

  3、學生活動:針對問題,學生思考后回答

  ①同位角相等兩直線平行;

 、趦儒e角相等兩直線平行;

  ③同旁內角互補兩直線平行;

  4、教師肯定學生的回答并提出新問題:若兩直線平行,那么同位角、內錯角、同旁內角各有什么關系呢?從而引出課題:7.2探索平行線的性質(板書)

 。ǘ⿺(shù)形結合,探究性質

  1、畫圖探究,歸納猜想

  教師提要求,學生實踐操作:任意畫出兩條平行線(a ∥ b),畫一條截線c與這兩條平行線相交,標出8個角。(統(tǒng)一采用阿拉伯數(shù)字標角)

  教師提出研究性問題一:

  指出圖中的同位角,并度量這些角,把結果填入下表:

  教師提出研究性問題二:

  將畫出圖中的同位角任先一組剪下后疊合。

  學生活動一:畫圖————度量————填表————猜想

  學生活動二:畫圖————剪圖————疊合

  讓學生根據(jù)活動得出的數(shù)據(jù)與操作得出的結果歸納猜想:兩直線平行,同位角相等。

  教師提出研究性問題三:

  再畫出一條截線d,看你的猜想結論是否仍然成立?

  學生活動:探究、按小組討論,最后得出結論:仍然成立。

  2、教師用《幾何畫板》課件驗證猜想,讓學生直觀感受猜想

  3、教師展示平行線性質1:兩條平行線被第三條直線所截,同位角相等。(兩直線平行,同位角相等)

 。ㄈ┮晁伎迹囵B(yǎng)創(chuàng)新

  教師提出研究性問題四:

  請判斷兩條平行線被第三條直線所截,內錯角、同旁內角各有什么關系?

  學生活動:獨立探究————小組討論————成果展示。

  教師活動:評價學生的研究成果,并引導學生說理

  因為a ∥ b(已知)

  所以∠ 1= ∠ 2(兩直線平行,同位角相等)

  又∠ 1= ∠ 3(對頂角相等)

  ∠ 1+ ∠ 4=180°(鄰補角的'定義)

  所以∠ 2= ∠ 3(等量代換)

  ∠ 2+ ∠ 4=180°(等量代換)

  教師展示:

  平行線性質2:兩條平行線被第三條直線所截,內錯角相等。(兩直線平行,內錯角相等)

  平行線性質2:兩條平行線被第三條直線所截,同旁內角互補。(兩直線平行,同旁內角互補)

  (四)實際應用,優(yōu)勢互補

  1、(搶答)課本P13練一練1、2及習題7.2 1.5

  2、(討論解答)課本P13習題7。22.3.4

 。ㄎ澹┱n堂總結:這節(jié)課你有哪些收獲?

  1、學生總結:平行線的性質1、2、3

  2、教師補充總結:

 、庞"運動"的觀點觀察數(shù)學問題;(如我們前面將同位角剪下疊合后分析問題)

  ⑵用數(shù)形結合的方法來解決問題;(如我們前面將同位角測量后分析問題)

 、怯脺蚀_的語言來表達問題;(如平行線的性質1、2、3的表述)

  ⑷用邏輯推理的形式來論證問題。(如我們前面對性質2和3的說理過程)

  (六)作業(yè)

  學習與評價P5 1、2、3(填空);4、5、6(選擇);7、8(拓展與延伸)

  六、教學反思:

  數(shù)學課要注重引導學生探索與獲取知識的過程而不單注重學生對知識內容的認識,因為"過程"不僅能引導學生更好地理解知識,還能夠引導學生在活動中思考,更好地感受知識的價值,增強應用數(shù)學知識解決問題的意識;感受生活與數(shù)學的聯(lián)系,獲得"情感、態(tài)度、價值觀"方面的體驗。這節(jié)課的教學實現(xiàn)了三個方面的轉變:

 、俳痰霓D變:本節(jié)課教師的角色從知識的傳授者轉變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者。教師成為了學生的導師、伙伴、甚至成為了學生的學生,在課堂上除了導引學生活動外,還要認真聆聽學生"教"你他們活動的過程和通過活動所得的知識或方法。

 、趯W的轉變:學生的角色從學會轉變?yōu)闀䦟W,跟老師學轉變?yōu)樽灾魅W。本節(jié)課學生不是停留在學會課本知識的層面上,而是站在研究者的角度深入其境,不是簡單地"學"數(shù)學,而是深入地"做"數(shù)學。

 、壅n堂氛圍的轉變:整節(jié)課以"流暢、開放、合作、‘隱導"為基本特征,教師對學生的思維活動減少干預,教學過程呈現(xiàn)一種比較流暢的特征,整節(jié)課學生與學生、學生與教師之間以"對話"、"討論"為出發(fā)點,以互助、合作為手段,以解決問題為目的,讓學生在一個較為寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。

  總之,在數(shù)學教學的花園里,教師只要為學生布置好和諧的場景和明晰的路標,然后就讓他們自由地快活地去跳舞吧

  平行線的性質教案設計 6

  【知識要點】

  1.三角形:由不在同一條直線上的三條線段首尾順次鏈接所圍成的封閉圖形叫做三角形

  這三條線段叫做這個三角形的邊;(AB、BC、CA)

  相鄰兩條邊的公共端點叫做這個三角形的頂點;(A、B、C)

  相鄰兩條邊所夾的角叫做這個三角形的內角,又叫做這個三角形的角(∠A、∠B、∠C)

  三角形的內角的鄰補角叫做這個三角形的外角

  2.三角形的表示為△ABC

  3.三角形的三條重要線段:高、中線、內角平分線(三條高所在的直線都交于一點,這個點叫

  做三角形的垂心;三條中線交于一點,這個點叫做三角形的重心;

  三條內角平分線交于一點,這個點叫做三角形的內心)

  4.三角形內角和定理以及相關的結論

  (1)三角形的內角和為180°

 。2)直角三角形的兩個銳角互余

 。3)三角形的外角和為360°

  (4)三角形的一個外角等于與它不相鄰的兩個內角的和

  (5)三角形的一個外角大于與它不相鄰的任何一個內角

  5.三角形的三邊關系定理

  三角形的任意兩邊之和都大于第三條邊;任意兩邊之差都小于第三條邊

  6.三角形具有穩(wěn)定性

  7.多邊形:由在同一平面內,不在同一直線上的若干條線段首尾順次連接所圍成的封閉圖形叫

  做多邊形

  這些線段叫做這個多邊形的邊;

  相鄰兩條邊的公共端點叫做這個多邊形的頂點;

  相鄰兩條邊所夾的角叫做這個多邊形的內角,又叫做這個多邊形的角

  多邊形的內角的鄰補角叫做這個多邊形的外角

  8.對角線:連結多邊形不相鄰的兩個頂點的線段叫做多邊形的對角線

  由一個頂點出發(fā)的對角線有( n -3)條;( n 表示邊數(shù))

  多邊形共有條對角線( n 表示邊數(shù))

  9.多邊形的內角和及外角和

  (1)多邊形的內角和為(n-2)180°( n 表示邊數(shù))

 。2)多邊形的外角和為360°

  階段練習

  一、回答下列各問題

  1.什么是三角形?它有哪些元素?通常用什么符號來表示它及三個角所對的邊?

  2.為什么屋架、橋梁及電桿的支架多采用三角形的形狀?

  3.如果△ABC的三條邊長分別為(12、13、14)及(10、20、30),這樣的三角形能成立嗎?

  為什么?

  4.設△ABC的邊長分別為a、b、c,那么這三條邊的`邊長須具有什么條件,才能將△ABC畫

  出來

  5.△ABC中有幾條角平分線?試畫圖說明

  6.什么是三角形的高?一個三角形有幾條高?三角形的高的位置是否一定在形內?為什么?

  試畫圖說明

  7.三角形的一條中線把這個三角形分成兩部分,這兩個部分的面積有什么關系?為什么?

  8.三角形的三個內角分別為α、β、γ,則α+β+γ的值是多少?

  9.三角形的一個外角與它不相鄰的兩個內角之間有什么關系?

  二、填空題

  1.三角形的外角和是內角和的()倍

  2.四邊形的外角和是內角和的()倍

  3.六邊形的外角和是內角和的()倍

  4.一個多邊形的內角和是900°,則這個多邊形是()邊形

  三、解答題

  已知AC、AD是五邊形ABCDE的對角線,求證:AB+BC+CD+DE+EA>AC+CD+DA

  平行線的性質教案設計 7

  教學目標:

  1、經歷觀察、操作、想像、推理、交流等活動,進一步發(fā)展空間觀念,推理能力和有條理表達能力。

  2、經歷探索直線平行的性質的過程,掌握平行線的三條性質,并能用它們進行簡單的推理和計算。

  重點:探索并掌握平行線的性質,能用平行線性質進行簡單的推理和計算。

  難點:能區(qū)分平行線的性質和判定,平行線的性質與判定的混合應用。

  教學過程

  一、引導學生逆向思維

  現(xiàn)在同學們已經掌握了利用同位角相等,或者內錯角相等,或者同旁內角互補,判定兩條直線平行的三種方法。在這一節(jié)課里:大家把思維的指向反過來:如果兩條直線平行,那么同位角、內錯角、同旁內角的數(shù)量關系又該如何表達?

  二、實踐探究

  1、學生畫圖活動:用直尺和三角尺畫出兩條平行線a∥b,再畫一條截線c與直線a、b相交,標出所形成的八個角(如課本P21圖5.3—1)。

  2、學生測量這些角的度數(shù),把結果填入表內。

  角∠1∠2∠3∠4∠5∠6∠7∠8

  度數(shù)

  3、學生根據(jù)測量所得數(shù)據(jù)作出猜想。

 。1)圖中哪些角是同位角?它們具有怎樣的數(shù)量關系?

 。2)圖中哪些角是內錯角?它們具有怎樣的數(shù)量關系?

 。3)圖中哪些角是同旁內角?它們具有怎樣的數(shù)量關系?

  4、學生驗證猜測。

  學生活動:再任意畫一條截線d,同樣度量并計算各個角的度數(shù),你的猜想還成立嗎?

  5、師生歸納平行線的性質,教師板書。

  平行線具有性質:

  性質1:兩條平行線被第三條直線所截,同位角相等,簡稱為兩直線平行,同位角相等。

  性質2:兩條平行線被第三條直線所截,內錯角相等,簡稱為兩直線平行,內錯相等。

  性質3:兩條直線按被第三條線所截,同旁內角互補,簡稱為兩直線平行,同旁內角互補。

  教師讓學生結合右圖,用符號語言表達平行線的這三條性質,教師同時板書平行線的性質和平行線的判定。

  平行線的性質平行線的判定

  因為a∥b,因為∠1=∠2,所以∠1=∠2所以a∥b。

  因為a∥b,因為∠2=∠3,所以∠2=∠3,所以a∥b。

  因為a∥b,因為∠2+∠4=180°,所以∠2+∠4=180°,所以a∥b。

  6、教師引導學生理清平行線的性質與平行線判定的'區(qū)別。

  學生交流后,師生歸納:兩者的條件和結論正好相反:

  由角的數(shù)量關系(指同位角相等,內錯角相等,同旁內角互補),得出兩條直線平行的論述是平行線的判定,這里角的關系是條件,兩直線平行是結論。

  由已知的兩條直線平行得出角的數(shù)量關系(指同位角相等,內錯角相等,同旁內角互補)的論述是平行線的性質,這里兩直線平行是條件,角的關系是結論。

  7、進一步研究平行線三條性質之間的關系。

  教師:大家能根據(jù)性質1,推出性質2成立的道理嗎?

  結合上圖,教師啟發(fā)分析:

  考察性質1、性質2的結論發(fā)生了什么變化?

  學生回答∠1換成∠3,教師再問∠1與∠3有什么關系?并完成說理過程,教師糾正學生錯誤,規(guī)范地給出說理過程。

  因為a∥b,所以∠1=∠2(兩直線平行,同位角相等);

  又∠3=∠1(對頂角相等),所以∠2=∠3。

  教師說明:這是有兩步的說理,第一步推理根據(jù)平行線性質1,第二步推理的條件不僅有∠1=∠2,還有∠3=∠1。∠2=∠3是根據(jù)等式性質。根據(jù)等式性質得到的結論可以不寫理由。

  學生仿照以下說理,說出如何根據(jù)性質1得到性質3的道理。

  8、平行線性質應用。

  講解課本P23例題

  三、鞏固練習

  課本練習(P22)。

  四、作業(yè):課本P22.1,2,3,4,6。

  平行線的性質教案設計 8

  教學目標:

  1. 知識與技能: 學生能準確理解并掌握平行線的性質,包括“兩直線平行,同位角相等;內錯角相等;同旁內角互補”。

  2. 過程與方法: 通過觀察、推理、證明等數(shù)學活動,培養(yǎng)學生邏輯思維能力和空間觀念,學會運用平行線性質解決實際問題。

  3. 情感態(tài)度與價值觀: 培養(yǎng)學生對幾何學的興趣,體驗幾何證明的嚴謹性和邏輯美,提高發(fā)現(xiàn)問題、分析問題、解決問題的能力。

  教學重點:

  理解并掌握平行線的性質,能運用性質進行簡單的推理與證明。

  教學難點:

  運用平行線性質解決實際問題,提升空間想象能力。

  教學準備:

  多媒體課件、三角板、量角器、平行線模型、相關習題卡等。

  教學過程:

  【引入新課】

  1. 情境創(chuàng)設:展示生活中常見的平行線實例(如鐵路軌道、建筑結構等),引導學生觀察并思考其特征,引出平行線概念。

  2. 復習提問:回顧平行線的定義及表示方法,提問學生如何判斷兩條直線是否平行,為學習平行線性質做好鋪墊。

  【新課講授】

  環(huán)節(jié)一:探索平行線性質

  1. 動手操作:分組發(fā)放平行線模型,讓學生利用三角板、量角器等工具測量平行線被第三條直線所截形成的角,記錄數(shù)據(jù)。

  2. 數(shù)據(jù)分析:匯總各組數(shù)據(jù),引導學生發(fā)現(xiàn)規(guī)律,即同位角相等、內錯角相等、同旁內角互補。

  3. 性質歸納:教師結合學生發(fā)現(xiàn),給出平行線性質的正式表述,并強調性質的`應用前提——“兩直線平行”。

  環(huán)節(jié)二:性質應用與證明

  1. 例題解析:出示例題,運用平行線性質進行簡單的推理或證明,教師邊講解邊板書,強調解題思路與步驟。

  2. 學生實踐:布置相似題目,讓學生嘗試獨立完成,教師巡視指導,解答疑問。

  環(huán)節(jié)三:實際問題解決

  1. 情境設置:給出生活或實際問題情境(如設計建筑物、規(guī)劃道路等),要求學生運用平行線性質進行分析和解答。

  2. 小組討論:學生分組討論解決方案,推選代表分享本組思路,教師點評并補充。

  【課堂小結】

  1. 知識回顧:師生共同回顧本節(jié)課學習的主要內容——平行線的性質及其應用。

  2. 要點強調:再次強調平行線性質的應用條件及證明過程中應遵循的邏輯順序。

  【課后作業(yè)】

  1. 基礎練習:設計與平行線性質直接相關的習題,鞏固基礎知識。

  2. 拓展思考:提供更具挑戰(zhàn)性的幾何問題或實際應用題,鼓勵學生運用所學知識進行深入探究。

  【教學反思】

  課后反思教學效果,針對學生理解難點、課堂互動情況、作業(yè)反饋等進行總結,為后續(xù)教學調整提供依據(jù)。

  • 相關推薦

【平行線的性質教案設計】相關文章:

平行線的性質教案05-18

平行線性質教學反思08-15

平行線性質的探索教案05-18

平行線的性質教學設計06-19

《平行線的性質》教學反思總結06-20

垂線的性質及平行線的判定總結06-26

磁鐵的性質教案設計06-23

《鈉的性質》教案設計05-13

平行線及平行公理教案設計05-18

丰台区| 德清县| 天门市| 碌曲县| 绥滨县| 绿春县| 沂南县| 班玛县| 大连市| 修水县| 安乡县| 会泽县| 北川| 满洲里市| 屯门区| 嘉义县| 循化| 揭阳市| 阆中市| 天全县| 隆昌县| 贺州市| 台山市| 南昌市| 邓州市| 开化县| 包头市| 涟水县| 彭泽县| 吉隆县| 武宣县| 昌乐县| 霍林郭勒市| 东山县| 洪江市| 杭锦旗| 武胜县| 平和县| 紫阳县| 凤庆县| 旌德县|